Main Product Characteristics | V _{(BR)DSS} | 30V | | | |----------------------|------|--|--| | R _{DS(ON)} | 27mΩ | | | | I _D | 5.6A | | | SOT-23 **Features and Benefits** - Advanced MOSFET process technology - Ideal for high efficiency switched mode power supplies - Low on-resistance with low gate charge - Fast switching and reverse body recovery ### **Description** The GSF3400 utilizes the latest techniques to achieve ultral high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in battery protection, load switch, power management and a wide variety of other applications. ### Absolute Maximum Ratings (T_A=25°C unless otherwise specified) | Parameter | Symbol | Max. | Unit | |--|--|--------------|------| | Drain-Source Voltage | V _{DS} | 30 | V | | Gate-to-Source Voltage | V _{GS} | ± 12 | V | | Continuous Drain Current, @ Steady-State | I _D @ T _A = 25°C | 5.6 | А | | Continuous Drain Current, @ Steady-State | I _D @ T _A = 70°C | 4.5 | А | | Pulsed Drain Current ¹ | I _{DM} | 23 | А | | Power Dissipation | P _D @T _A = 25°C | 1.2 | W | | Junction-to-Ambient (PCB Mounted, Steady-State) ² | R _{0JA} | 104 | °C/W | | Operating Junction and Storage Temperature Range | T _J T _{STG} | -55 to + 150 | °C | ## **Electrical Characteristics** (T_A=25°C unless otherwise specified) | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | |---|----------------------|--|------|------|------|------|--| | Drain-to-Source Breakdown
Voltage | $V_{(BR)DSS}$ | V _{GS} = 0V, I _D = 250μA | 30 | - | _ | V | | | Drain-to-Source Leakage Current | I _{DSS} | V _{DS} = 30V, V _{GS} = 0V | - | - | 1 | μА | | | | | T _J = 125°C | - | - | 50 | | | | Gate-to-Source Forward Leakage | I _{GSS} | V _{GS} =12V | - | - | 100 | nA | | | | | V _{GS} = -12V | - | - | -100 | | | | Static Drain-to-Source On- | R _{DS (on)} | V _{GS} =10V, I _D = 5.6A | - | 21 | 27 | mΩ | | | Resistance | | V _{GS} =4.5V, I _D = 5.0A | | 25 | 33 | | | | | | V _{GS} =2.5V, I _D = 3.0A | - | 33 | 51 | | | | Gate Threshold Voltage | V _{GS (th)} | $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ | 0.65 | 0.9 | 1.5 | V | | | Input Capacitance | C _{iss} | | - | 535 | - | pF | | | Output Capacitance | C _{oss} | $V_{GS} = 0V V_{DS} = 15V f$
= 1MHz | - | 130 | - | | | | Reverse transfer capacitance | C _{rss} | | - | 36 | - | | | | Total Gate Charge | Q_g | | - | 4.8 | - | nC | | | Gate-to-Source Charge | Q_{gs} | I _D =5.6A, V _{DS} =15V,
V _{GS} =4.5V | - | 1.2 | - | | | | Gate-to-Drain("Miller") Charge | Q_{gd} | | - | 1.7 | - | | | | Turn-on Delay Time | $t_{d(on)}$ | | - | 12 | - | nS | | | Rise Time | tr | V_{GS} =4.5V, V_{DS} =15V, R_L =15 Ω , | - | 52 | - | | | | Turn-Off Delay Time | $t_{d(off)}$ | $R_{GEN}=2.8\Omega$ $I_D=1A$ | - | 17 | - | | | | Fall Time | t _f | | - | 10 | - | | | | Source-Drain Ratings and Charac | teristics | | | | | | | | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | | Continuous Source Current
(Body Diode) | Is | MOSFET symbol showing the integral reverse | - | - | 5.6 | А | | | Pulsed Source Current (Body Diode) | I _{SM} | p-n junction diode. | - | - | 23 | А | | | Diode Forward Voltage | V _{SD} | I _S =5.6A, V _{GS} =0V | - | 0.8 | 1.2 | V | | #### Notes - 1. Pulse test: Pulse Width≤300us, Duty cycle ≤2%. - 2. Device mounted on FR-4 PCB, 1inch x 0.85inch x 0.062 inch. ## **Typical Electrical and Thermal Characteristic Curves** **Figure 1. Typical Output Characteristics** **Figure 2. Transfer Characteristics** Figure 3. Gate Charge. Figure 4. Normalized On-Resistance Vs. Junction Temperature ## **Typical Electrical and Thermal Characteristic Curves** Figure 5. Drain-Source On-Resistance Figure 6. Typical Capacitance Vs. Drain-to-Source Voltage Figure 7. Safe Operation Area ### **Test Circuit & Waveform** Figure 8. Unclamped Inductive Switching Test Circuit & Waveforms Figure 9. Resistive Switching Test Circuit & Waveforms Figure 10. Gate Charge Test Circuit & Waveform # **Package Outline Dimensions** | Symbol | Dimensions In Millimeters | | Dimensions In Inches | | | |--------|---------------------------|-------|----------------------|-------|--| | | Min | Max | Min | Max | | | Α | 0.900 | 1.000 | 0.035 | 0.039 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | b | 0.300 | 0.500 | 0.012 | 0.020 | | | С | 0.090 | 0.110 | 0.003 | 0.004 | | | D | 2.800 | 3.000 | 0.110 | 0.118 | | | Е | 1.200 | 1.400 | 0.047 | 0.055 | | | E1 | 2.250 | 2.550 | 0.089 | 0.100 | | | е | 0.950 TYP. | | 0.037 TYP. | | | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | | L | 0.550 REF. | | 0.022 REF. | | | | L1 | 0.300 | 0.500 | 0.012 | 0.020 | | | θ | 1° | 7° | 1° | 7° | |