

More Information
- Wireless Home
- Application Notes and Tutorials
- EV Kit Software
- Technical Support

Click here for an overview of the wireless
components used in a typical radio
transceiver.

Maxim > Design Support > Technical Documents > Reference Designs > Energy Measurement & Metering > APP 5391
Maxim > Design Support > Technical Documents > Reference Designs > Microcontrollers > APP 5391
Maxim > Design Support > Technical Documents > Reference Designs > Wireless and RF > APP 5391

Keywords: wireless automatic meter reading, AMR, transceiver, transmitter, receiver, ISM, RF, radio, PCB, layout, schematic, hardware, firmware,
microcontroller, utility company, smart grid, protocol, antenna, link, range

REFERENCE DESIGN 5391 INCLUDES: Tested Circuit Schematic BOM Board Available Description Test Data Software Layout

LFRD002: Wireless Automatic Meter Reading Reference Design
By: Martin Stoehr, Principal Member of the Technical Staff, Applications
May 04, 2012

Abstract: This reference design provides a complete demonstration platform for using industrial/scientific/medical
radio frequency (ISM-RF) products in a wireless automatic meter reading (AMR) application. This document
includes the hardware, firmware, and system structure requirements for implementing an AMR design.

General Description
The MAX7032 transceiver reference design (RD) is a self-contained evaluation platform for exercising the
device as a wireless automatic meter reading (AMR) demo system. With the use of the Maxim USB-to-JTAG
board (MAXQJTAG-USB), the MAXQ610 on both the slave meter (MTR) and the master reader (RDR) board
can be programmed by the end user.

The meter board enables basic human interaction through a single momentary switch input and an LED for
visual feedback. The MTR is designed to be compact, providing a self-contained transceiver board with a
radio, microcontroller, and multiple "ports" for connecting various meter inputs to the system. Two separate
designs are provided: one with a built-in printed circuit board (PCB) antenna, and the other with a small-footprint antenna-mounting option. Input
to the MTR system can be configured with up to six ports, and the primary input interfaces with a "pulse" or dry contact (reed) output meter. This
board can be operated from any 3V power source (1.7V to 3.6V for the MAXQ610, 2.1V to 3.6V for the MAX7032).

The reader board has seven menu keys for user input, a reset switch, a 102 pixel x 64 pixel LCD display with multicolor LED backlighting for
menu interactions, plus a receive signal indicator (RSI) LED. The shape of the reader unit (RDR) fits within a Series 55 BOX enclosure, and has
both an edge-connected antenna mount and a built-in PCB trace antenna.

Both systems are preprogrammed with operational firmware to demonstrate a simple wireless AMR meter (slave)/reader (master) system. Gerber
files are available for simple cut-and-paste designs of the radio sections or the full implementation.

Features
Proven printed circuit board (PCB) layout
Proven component parts list
Preprogrammed transceiver (TRX) pair for quick demonstration capabilities
Free MAXQ® microcontroller programming tools available for flexible operation

Quick Start
1. Pull the three boards (two MTR boards and the RDR board) out of box and install the batteries.
2. Connect the RDR antenna.
3. Navigate the RDR menu system MAIN MENU AMR MENU START COMM

The RDR will communicate with each of the MTR units in turn and will return the value of 00 after each communication.

Meter and Reader Board Description

Page 1 of 28

http://www.maxim-ic.com/products/wireless/
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/38
http://www.maxim-ic.com/tools/evkit/index.cfm?pl=14
http://www.maxim-ic.com/support/tech_support/submit_question.mvp?pl_id=14
http://www.maxim-ic.com/app-notes/index.mvp/id/4651
http://www.maxim-ic.com/app-notes/index.mvp/id/4651
http://www.maxim-ic.com/app-notes/index.mvp/id/4651
http://www.maxim-ic.com/app-notes/index.mvp/id/4651
http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp/id/63/c/Energy%20Measurement%20%26amp%3B%20Metering#c63
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp
http://www.maximintegrated.com/design/techdocs/reference-designs/index.mvp/id/38/c/Wireless%20and%20RF#c38
http://www.maximintegrated.com/MAX7032
http://www.maximintegrated.com/MAXQ610

Unpopulated Rev C boards

Form Factor
The LFRD002 was designed as a demonstration platform for both the MAX7032 transceiver and the MAXQ610 microcontroller. This reference
design targets a low-cost, low bill-of-materials (BOM) count, RF link, showing how an inexpensive design can still work in a variety of metering
environments. Both the MTR and the RDR systems incorporate a MAX7032 radio IC mated with a MAXQ610 microcontroller that comes
preprogrammed to operate as a wireless AMR demonstration system.

Both boards allow the end user to program the MAXQ610 through a JTAG interface. In its smallest form, the MTR board is 3cm x 3cm while the
RDR board measures in at 11.5cm x 6.1cm.

Populated Rev C boards

I/Os and Switches
Power to the MTR board is typically supplied by a 3.6V lithium (Li) battery but can be powered through the JTAG interface as well. The RDR
board is typically powered by a pair of AA batteries, and also has the JTAG power provision.

RDR Switch Function Table

Switch Position Function Connection

SW-PWR Momentary "Reset" Pin 11, P1.2 of µC

(up) Momentary "^" or "Up" Pins 12 & 23 of MAX7359

(left) Momentary "<" or "Left" Pins 13 & 24 of MAX7359

ENTER Momentary "Enter" Pins 12 & 24 of MAX7359

(right) Momentary ">" or "Right" Pins 11 & 24 of MAX7359

(down) Momentary "v" or "Down" Pins 1 & 12 of MAX7359

Page 2 of 28

(Esc) Momentary "Escape" Pins 1 & 13 of MAX7359

(TX) Momentary "Transmit" Pins 1 & 11 of MAX7359

MTR Switch Function Table

Switch Position Function µC Connection

SW-A Momentary User TX Pin 11, P1.2

RDR and MTR I/O Edge Connectors

Signal Description µC Connection

JTAG-1 TCK—clock Pin 24, P2.4

JTAG-2 GND—ground

JTAG-3 TDO—data out Pin 27, P2.7

JTAG-4 VBAT—external supply

JTAG-5 TMS—master select Pin 26, P2.6

JTAG-6 nRST—reset Pin 28, Reset

JTAG-7 N/A

JTAG-8 N/A

JTAG-9 TDI—data in Pin 25, P2.5

JTAG-10 GND—ground

MTR LED Indicator Table

LED Function µC Connection

MRSI Tx/Receive Signal Indicator/heartbeat Pin 7, P0.6

RDR LED Indicator Table

LED Function µC Connection

RSSI Tx/Receive Signal Indicator Pin 7, P0.6

LEDBL1 Red backlight Pin 21, P1.7

LEDBL2 Green backlight Pin 20, P1.6

Data Frame Structure
The basic structure of the data frame is ASK modulated, Manchester encoded, 4.8kbps (0.2083ms/bit), and has 144 bits per frame (18 bytes or 9,
2-byte words), 30ms per frame, a pause of 70ms between frames, and 3 frame transmissions per burst. For information on Manchester encoding,
refer to application note 3435, "Manchester Data Encoding for Radio Communications."

This structure is directly compatible with other reference design communication formats, and utilities are provided in the RDR system to work
directly with other reference designs. Appendix I further describes each section of the remote keyless entry (RKE) frame structure.

Frame structure

Preamble ID Function Data Sync Bat Sig Chk Sum

FF FF FF FD 02 00 00 00 00 01 00 00 43 21 11 22 01 68

The structure of this frame is arbitrary, but provides an example of the information that can be contained in any frame related to the many
industrial, scientific, and medical (ISM) RF applications.

ID Structure

ID

02 00 00 00

This design has been preprogrammed to use a 0x02 00 00 00 identification code in the RDR, with the last byte being adjusted between MTR
systems (typically 0x01 and 0x02). This allows the RDR to communicate with each of the two MTR boards separately by addressing them one at
a time.

Page 3 of 28

http://www.maximintegrated.com/an3435

Function Structure

Function

FF 00

This reference design uses the Function field to communicate "group" and "individual" functions to the various MTRs within reception of the RDR
system. Again, this structure can be modified to suit the purposes of the user. In this application, the first byte of the Function field is used for
high-level commands such as ATTN and CLOSE. The second byte of the Function field is used for various hand-shaking or command operations.
Table 1 describes the various functions and their hexadecimal values as seen on the display and within the firmware:

Table 1. Functions and Hexadecimal Values Within the LFRD002 Firmware

Function
Frame Valueh

Source
Func[0] Func[1]

ATTN FF XX RDR

REQ 00 8P RDR

DAT 00 1P MTR

SET 00 1P RDR

CLR 00 2P RDR

ACK 00 4P RDR

CLOSE AA XX RDR

ECHO 00 00 Node

Red (A) 00 01 RKE TX

Green (B) 00 02 RKE TX

Blue (C) 00 04 RKE TX

Amber (D) 00 08 RKE TX

P = Addressed port number, X = don't care, NN = node list index

These values are an arbitrary definition for the structure of the Func field, which can always be modified by the user.

Data Structure

Data

00 00

The Data section of this frame is provided for transmitting information such as a temperature, pressure, or volume measurement. In this design,
the Data field tallies pulse outputs from a water meter. Again, the use of this Data value is arbitrary and can be modified by the user.

Communication Protocol
The basic structure defines the interaction of the RDR (master) system and any number of MTR (slave) systems. (See Appendix V).

To conserve power, the MTR systems are configured to operate with a predefined OFF/ON or sleep/listen (S/L) duty cycle. In this demo system,
after power is applied to the MTR board, it acknowledges startup with four flashes of the LED, then enters into a 3.0s sleep/0.5s listen cycle.
During the ON cycle, the radio is configured for Rx mode, and the system will listen for any in-frequency, ASK broadcasts. If a valid ATTN frame
is received, the MTR system will suspend its S/L cycle and enter into a full wake state.

All communication is initiated with a broadcast from the RDR system. Since the MTRs are presumably in a 3.0s/0.5s S/L cycle, the RDR begins
with a 5s transmission of Attention (ATTN) frames to awaken all MTRs within range. The ATTN frame is defined as Don't Care values for all of the
fields, except for the checksum and the first byte of the Function Structure, which is set to 0xFF00.

After issuing the ATTN signal, the RDR will communicate with all of the MTRs listed in the system (see the MTR List in the RDR Menu section).
In this case, two MTRs should be predefined in the system, with one port set up for reading on MTR ID 01, and two ports set up for reading on
MTR ID 02. Port 0 on the MTR is configured to act as the pulse-tally port, and MTR port 1 has a preset value of 0x2222. The communication can
occur either as a batch process (all the MTRs in the list are automatically contacted) or as a user-sequenced process (the user presses the
ENTER key to initiate a REQ/DATA exchange with each MTR entry in the MTR list individually).

Page 4 of 28

Figure 1. A MTR/RDR communication sequence.

A full communication sequence (Figure 1) takes the form of the RDR sending a Request (REQ) frame burst followed by a short pause, and the
RDR switching to RX mode. The MTR with the matching ID will decode the REQ frame, prepare the data, and switch to TX mode. The MTR
transmits a Data (DAT) frame to the RDR, then switches back to RX mode. The RDR receives the DAT frame, and then switches to TX mode and
sends an Acknowledge (ACK) frame to the MTR. At this point, the RDR system can either transmit another REQ frame (starting another
communication sequence, possibly addressing a different port on the MTR) or it can close the communication session with that MTR. After all of
the measurement ports of interest have been read from that MTR, the session with that ID is terminated by sending a Close (CLOSE) frame to the
MTR. After a MTR has received the CLOSE frame, it will revert to the S/L cycle until it receives a new ATTN frame.

Handling Lost Frames and Errors
After the RDR receives the requested information from the targeted MTR, it returns an ACK frame. Since this exchange consists of three functional
commands, both ends of the communication can be confirmed. If the REQ frame was not received properly, the RDR should recognize that when
it does not receive a DAT frame response; if the RDR did not receive the DAT frame, the MTR will not see an ACK frame response. This process
allows for retransmission of the REQ frame by the RDR (if no DAT frame is received) and similarly, the DAT frame can be retransmitted by the
MTR (if no ACK frame is received).

It should be assumed that the RDR has the potential for a stronger TX signal than the MTR.
If a MTR receives an ATTN signal but no other communication (within 30s), it reverts to its sleep/listen cycle.
If a RDR does not receive the DAT frame (after 1s), it will repeat a REQ frame (two more times). If the DAT frame is still not received, the
MTR should be skipped. In this case, the MTR will be flagged as NON-COMM.
If a MTR sends a DAT frame but does not receive an ACK frame (within 1s), it will repeat the DAT frame (two more times). In this case,
assume the session was closed and revert to its sleep/listen cycle.

This process will assure a minimum number of reattempts to communicate. If the three-burst frame is not sufficient and the multiple attempts also
fail, both units will revert to their default state (sleep/listen for the MTR, and NON-COMM for the RDR). This lost frame process is not currently
implemented.

RDR Menu
The RDR unit operates with a basic user interface structure using a simple menu system and a few navigation keys. To browse through the menu
system, there are seven keys: four directional arrows to scroll up (^) and down (v), right (<) and left (>), the ENTER key, the ESC key, and a TX
key. The menu interface indicates the selectable line with a ">" character (cursor) found in the left-most column of the display.

Main Menu
From the Main Menu, the user can navigate to the three primary functions of the RDR unit: the AMR functions, the RKE
functions (that can operate in conjunction with an LFRD001), and the utility functions.

AMR Menu
The primary menu of interest for the LFRD002 system will be the AMR Menu. From this screen, the user can review and
edit the MTR list, change the operating mode of the AMR sessions, begin an AMR communication session, or review the
last set of data received from the MTRs.

MTR Menu
Under the AMR Menu, the user can navigate to the list of MTRs to be serviced during the communication sessions. This

Page 5 of 28

screen will initially present a field showing the MTR List Index (the list entry being edited), the fields for that entry, and a
display of the next two MTRs in the list (shown in the box). The fields available for editing consist of the Address or MTR
ID of the unit to be contacted, the port of that MTR to be queried, and three flags for the actions to be performed. These
actions are an X flag for including (or executing) that MTR in the AMR session, a C flag for clearing the data stored on
the MTR, and a S flag for setting the data stored on the MTR. The "C" and "S" flag settings are available in the menu,
but the clear and set actions are not currently implemented.

To select the field for editing, first scroll the list up or down until the index of the desired MTR entry is
shown next to the EDIT MTR: prompt. The values for that entry will be displayed in the editing area.
Choose the field to edit by using the right and left arrow keys to select the item (ID, Port, X, C, or S
Actions). Once selected, press ENTER. Each field can be adjusted by scrolling through the values with
the up and down arrow keys. The MTR ID is edited one character at a time by using the right and left
arrow keys to select the digit and the up or down arrow keys to change the value. After setting the value
for any of the fields, press ENTER to accept the changes. Continue scrolling through the other fields or
leave the MTR Menu by pressing the ESC key. The 4-byte ID field is edited one character at a time with
a range of 0 to F on each character. The port can be set from 0 to 5. The flag fields are set to 0 for OFF; X, C, or S for ON.

RKE Menu
This menu provides a number of user-oriented functions and is directly compatible with the RKE protocol functions. The
mode can be used to switch the RDR unit between transmit (TX) and receive (RX) modes of the MAX7032 transceiver.
The PAIR TX/RX function allows the RDR to act as an RKE transmitter or an RKE using the ASK data frame. Once the
RDR unit is paired with another RDR unit, it will flash different-colored backgrounds on the display, based on the
function transmitted. This menu also displays the ID and function of any transmitter that is broadcasting the defined ASK
frame. This menu can be helpful in debugging any transmitters using the RKE or AMR protocol.

Utility Menu
The utility menu available in the RDR system allows for basic setting and interaction of the user with internal
microcontroller values. This menu shows the default backlight color (0 = none, 1 = red, 2 = green (default), and 3 =
amber), the "index" of the last communication attempt with a MTR in the MTR LIST, the sleep time setting (adjustable in
30s increments with 120s as the default), and the ID of the RDR unit itself.

Firmware Structure
MTR
Functional operation of the MTR and RDR systems is very similar. The MAXQ610 provides a number of inputs to the MAX7032, such as SCLK,
DIO, and CS for the SPI interface and DATA, ENABLE, TR, and RSSI for various other RF controls. The purpose of the MTR unit is twofold: first
is for the microcontroller to act as a manager and collect data from the meter system; second is to control the radio and communicate the data
upon request. One user input is available to force the MTR unit to transmit a basic data frame. The MAXQ610 and the MAX7032 are configured to
be in a "stop mode" unless one of three interrupts occur: a wakeup command from the timer, a switch press from the user, or an incoming edge
from the meter port. The last two items will cause an external interrupt to be triggered, whereas the wakeup timer generates an internal interrupt.

The interrupt is serviced by the microcontroller, which decodes the source of the interrupt, then takes the appropriate action. A switch press event
will cause the microcontroller to go directly into transmit mode and send an ID frame. A positive edge on the meter port is accumulated in a
counter and stored in memory until the information is requested. A wakeup command is the most complex of the three processes and involves
timers, branching decisions, and possibly both modes (RX and TX) for the MAX7032. See Appendix II for the MTR firmware code.

Page 6 of 28

Figure 2. MTR functional operation.

Page 7 of 28

Figure 3. MTR/RDR subroutines

Page 8 of 28

Figure 4. MTR/RDR Tx subroutine.

RDR
As noted, the functional operation of the RDR and MTR systems are very similar. The MAXQ610 microcontroller has the same interface to the
MAX7032 transceiver to simplify and share firmware code between the two units. In the RDR unit, there is a great deal of user interface
functionality in addition to the operational aspects of the radio. The RDR unit acts as the master in the communication process, initiating the AMR
session, requesting frames from each MTR unit in turn, and releasing the MTR units back to their S/L cycle.

Human interfacing is provided through the Electronic Assembly DOGS102-6 pixel display, along with the backlighting, an RSI LED, and the menu
keys. The display operates with an SPI interface and thus shares the SCLK and DIO lines with the MAX7032 and the MAX7359. The key
controller operates with an I²C interface and shares the clock and data lines from the SPI devices as well as providing an interrupt signal to the
microcontroller.

The interrupts are serviced by first determining the source of the interrupt then operating with that source appropriately. A key press event will
cause the microcontroller to "pop" the MAX7359 stack, a switch press will wait for about 4s and reset the RDR system. An incoming transmission
will be decoded as needed, if the RDR is configured in RX mode for either an AMR session or RKE debug use. Raw transmissions can be sent
from the RDR system if the RKE mode is set to TX and the user presses the TX key. See Appendix III for the RDR firmware code.

Microcontroller Programming SW
The firmware in this reference design was developed within the IAR Embedded Workbench® software. A full version of this software (4k KickStart
Edition) can be obtained at www.iar.com/. The IAR EW works in concert with the MAXQUSB-JTAG interface and the programming adapter, to
flash the MAXQ610 on both the TX and RX boards.

Installation
Please refer to the IAR EW documentation for installation and guidance. The firmware in this projected was developed with MAXQ plug-in: IAR

Page 9 of 28

http://www.lcd-module.com/products/dog.html
http://www.iar.com/

EWMAXQ2.20I.

Operation
Be sure to have the USB port properly configured within the IAR EW: Project Options... General Options—Debugger—JTAG . The COM Port
should be set to match the "USB Serial Port (COM XX)" as indicated in the Windows® Device Manager.

For best performance during programming and debug of the MAXQ610, we suggest adjusting the Advanced Settings for the COM port (Device
Manager USB Serial Port (COM XX) Properties Port Settings Advanced...). Recommended values for receive and transmit buffer sizes
are 512 bytes and a recommended latency timer of 4ms should provide optimal operation.

The USBJTAG translator (MAXQJTAG-USB) board uses a FTDI UART and a MAXQ2000 to convert the PC's serial port into a JTAG port. This
board's firmware should be checked for the latest version. To determine the firmware revision, connect the USBJTAG board to a USB port; open
the Microcontroller Tool Kit (MTK2) software; select Dumb Terminal in the Select device window during startup (click OK); choose Options
Configure Serial Port and select the appropriate COM port and choose the 115200 Speed (click OK); choose Target Open COMXX...; hit Enter
a few times; type q and hit Enter. The terminal should read back the firmware revision as "83."

A JTAG interface adapter (JIA) must be used to program these systems because of the different supply levels. The USB port provides a 5V power
supply that must be regulated down to the 3.3V level needed on the RD002 boards. One of these JIA boards is included in the LFRD002 kit.

The edge connector should be oriented with JTAG pin 1 on the top of the MTR or RDR boards. The system can be programmed with batteries in
place or without batteries installed (3.3V regulated USB power is used). Within the C code, there are some lines that can be uncommented to help
with debug of firmware changes.

Operational Setup and Use
AMR Functionality
Reviewing/Editing the MTR List
The RDR has been configured to communicate with the each of the two MTR units included in the kit. These communication entries can be
reviewed or adjusted as described in the previous MTR Menu section. Under the AMR Menu, select the MTR List to review or edit the entries.
The default entries are listed as the following:

EDIT MTR:
1 02000001.0 X00
2 02000002.0 X00
3 02000002.1 X00
4 02000003.0 000
... ...

The first entry in this list (EDIT MTR: 1) is referring to the first MTR unit (with ID 02000001), Port 0 (.0), and the action to be taken is to include
this unit in the communications process (indicated by the X field). The second entry is addressing the second MTR unit (with ID "02000002"), Port
0 (".0"), and again, this unit is included in the communications list the ("X" entry). The third item is indicating the second MTR unit again, this time
Port 1 is addressed. Finally, the fourth entry is referring to an undefined MTR unit (ID ...03), and it is set to take no action on that unit (indicated
by the "0" entry in the execute field).

Communicating with the Meters
To actually communicate with the MTRs listed, the user must initiate the communications process. Before initiating the communication, the user
can choose between a fully automated communication session (referred to as a batch process) or a partial user-controlled session (called a
sequential process). These two settings are controlled by the AMR MODE listed in the AMR MENU. To change between the two settings, simply
select the AMR MODE line and press ENTER.

RKE Functionality
Pairing the MTR and RDR Units
In this reference design, each of the MTR units has been preprogrammed with a semi-unique ID (0x02000001 and 0x02000002). This 4-byte
value has been flashed into the MAXQ610 as part of the FW encoding process and can be easily changed by the user by reprogramming the
microcontroller. Similarly, the RDR unit has a preprogrammed ID (0x02000000) that can be changed by the user with a FW edit. This system does
not require any form of "pairing" in the traditional sense, because the use of this communication protocol only requires the RDR unit to know the
ID of the MTR unit of interest. Other MTRs can be added to the MTR List by the user and included in the AMR session.

The RKE menu items do provide an RKE-style pairing function. Therefore, if the RDR is to be used for debugging purposes or for decoding
information from a MTR unit or another RDR, the unit can be paired with any TX unit by selecting the "PAIR TX/RX" item in the RKE menu. The
RDR unit will wait until a valid transmission is received and will then link with that unit ID, displaying unique background colors for the different key
fob switches pressed.

To link the RDR system to the transmitter system, the user simply needs to set the "PAIR TX/RX" item in the RKE menu and send a valid signal
with the transmitter to be paired. This process must be repeated whenever the batteries are replaced on the RDR system.

Page 10 of 28

1. Select the "PAIR TX/RX" item in the RKE menu.
2. Press any button on the TX system (MTR or RDR) to be paired.
3. The RDR system should cycle the backlight colors when a valid frame is received.
4. The two systems are now paired, test the link with any button press on the TX

Range
The predicted range in a flat unobstructed outdoor area is based on the following assumptions.

f0 = 433.92MHz
PPA = +10dBm
GT = -18dBi (small loop antenna typical -18dBi)
hTX = 1m
hRX = 1m
GR = 4.14dBi (ideal 1/4λ antenna = 5.14dBi)
LConR1 = -0.57dB

Path loss varies as R-4 because of ground bounce interference
RX sensitivity set at -114dBm

The calculated estimate of "open field" range is approximately 370m (see application note 5142, "Radio Link-Budget Calculations for ISM-RF
Products" for more information).

Indoor range testing resulted in a consistent useable distance of 30m using a Linx reduced-height antenna connected to the RDR; 35m was
achieved with a 1/4λ antenna on the MTR, with the MTR unit placed ~2m above the floor (cube wall); 30m was also reached in a lab environment
with the MTR positioned 1m above the floor (bench top).

Battery Usage Analysis
Microcontroller
[1.8V nominal core voltage, 1.0V RAM (min) data retention/power-on-reset voltage]
The MAXQ610 microcontroller burns a maximum 12µA (with power-fail off) during "stop" mode.
The MAXQ610 microcontroller (with 12MHz SysClk) burns a maximum of 5.1mA during normal operation.

TRX
[2.1V to 3.6V operation]
The MAX7032 transceiver burns a maximum 8.8µA (3V, 85°C) during sleep mode.
The MAX7032 transceiver during TX operation burns a typical 12.4mA at 434MHz (max 20.4mA) with "always on"; when running at 50% duty
cycle at 434MHz, it burns a typical 8.4mA (ASK) and a maximum of 13.6mA.
The MAX7032 transceiver typically burns 6.4mA at 434MHz, ASK (3V, 85°C) with a maximum of 8.3mA during RX operation.

Key Controller
[1.62V to 3.6V operation]
The MAX7359 key switch controller burns a maximum 5µA during sleep mode.
The MAX7359 key switch controller burns typical 25µA, maximum 60µA; with one key pressed the controller burns a typical 45µA during normal
operation.

MTR
LED: configured with 75Ω limiting resistors, yellow (VF = 2.2), nominal 10.7mA on current.

The average MTR system sleep current was measured to be 233µA. If left in sleep mode consistently, using a 750mAh, CR2 battery, the MTR
unit would last about 134 days. For the sleep/listen duty cycle of 14.3% (3.0s sleep/0.5s listen), with the microcontroller and MAX7032 cycling, the
measured current averaged a maximum of 11.6mA. Using the CR2 battery, the typical MTR life (without any TX communication) would be
approximately 403hrs [11.6mA × 0.143 + 0.233mA × 0.857 = 1.859mA] or about 16.8 days.

The average maximum current during communications (TX/RX with the RDR unit) was approximately 15.62mA. If a 10s communication session
was held once a day, the overall life of the CR2 battery would be reduced by 0.73mA/day—a negligible amount of time.

This system has not yet been optimized for low-current "stop" mode.

RDR
In addition to the same radio configuration as above, the RDR unit also has the MAX7359 used for key inputs and the DOGS serial interface
display with backlighting. A standby mode is implemented, but the current consumption of the RDR unit has not been measured under varying
conditions.

Page 11 of 28

http://www.maximintegrated.com/an5142
http://www.maximintegrated.com/an5142

This system has not yet been optimized for mid-low current "standby" mode or low-current "stop" mode.

Hardware Details
Transceiver Specifications
Supply current (IDD) at fRF = 433MHz, TX 50% duty
cycle

8.4mA (typ)

Output power (POUT) into 50Ω +10.0dBm
(typ)

Receiver Specifications
Supply current (IDD) at fRF = 433MHz 6.4mA (typ)
Deep-sleep supply current (IDD) at fRF = 433MHz 0.8µA (max)
Sensitivity (average power level) -113dBm (typ)

Component List
The following table provides a list of components used to populate both the MTR and RDR boards. Maxim recommends high-quality, wire-wound
inductors for components used on both boards.

MTR

Designation Qty Description

C49–50 2 CAP, 0.01µF, 10%

C21–22 2 CAP, 0.047µF, 10%

C5–6 C51 3 CAP, 0.1µF, 10%

C4 1 CAP, 1.0µF, 10%

C2 1 CAP, 1.8pF, 5%

C1 C7–10 5 CAP, 100pF, 5%

C29 1 CAP, 10pF, 5%

C20 1 CAP, 1500pF, 5%

C3 C26 C31 C33–34, C45 6 CAP, 220pF, 10%

C27 1 CAP, 470pF, 10%

C28 1 CAP, 6.8pF, 5%

C30 1 CAP, 6.8pF, 5%

C52 1 CAP, 680pF, 10%

Y3 1 CERAMIC-SMD, 12.000MHz

F2 1 FLT\MURATA\SFTLA10M7FA00-B0, 10.7MHz

L4 1 IND-MOLDED, 10nH, 5%

L2 1 IND-MOLDED, 16nH, 5%

L10–12 3 IND-MOLDED, 22nH, 5%

L1 1 IND-MOLDED, 68nH, 5%

D-MRSI 1 LED-1

U4 1 MAX7032

U2 1 MAXQ610A-0000+

R1 R9 RBAT1 3 RES, 0Ω

R22–26 R29–30 7 RES, 100Ω

R13–14 2 RES, 100kΩ

R15 1 RES, 10kΩ

Page 12 of 28

R7 1 RES, 1MΩ

R-MRSI 1 RES, 75Ω

R4 1 RES, Open

J-MX-ANT 1 RF-SWITCH-SWF

SW-A 1 SW-SPST-NO-B, SPST NO

Y1 1 XTAL-SMD, 17.63416Mhz

RDR

Designation Qty Description

 1 BOX, Series 55 enclosure

 1 433MHz Antenna

C44 C46 2 CAP, 0.01µF, 10%

C14 C32 2 CAP, 0.047µF, 10%

C24-25 C47 C53-56 7 CAP, 0.1µF, 10%

C23 1 CAP, 1.0µF, 10%

C12 1 CAP, 1.8pF, 5%

C11 C35-38 5 CAP, 100pF, 5%

C42 1 CAP, 10pF, 5%

C13 1 CAP, 1500pF, 5%

C15 C17-19 C39 C43 6 CAP, 220pF, 10%

C40 1 CAP, 470pF, 10%

C16 1 CAP, 6.8pF, 5%

C41 1 CAP, 6.8pF, 5%

C48 1 CAP, 680pF, 10%

Y4 1 CERAMIC-SMD, 12.000MHz

U6 1 DISPLAY/DOGS102-6

F1 1 FLT\MURATA\SFTLA10M7FA00-B0, 10.7MHz

L6 1 IND-MOLDED, 10nH, 5%

L5 1 IND-MOLDED, 16nH, 5%

L7-9 3 IND-MOLDED, 22nH, 5%

L3 1 IND-MOLDED, 68nH, 5%

D-RSSI 1 LED-1

U1 1 MAX7032

U5 1 MAX7359ETG+

U3 1 MAXQ610A-0000+

R3 R5 RBAT2 3 RES, 0Ω

R11-12 R17-21 7 RES, 100Ω

R8 R10 2 RES, 100kΩ

R6 1 RES, 1MΩ

R2 1 RES, 4.7kΩ

RRSSI 1 RES, 75Ω

R16 1 RES, Open

J-RX-ANT 1 RF-SWITCH-SWF

J-RF-IN 1 SMA

Page 13 of 28

SW-D SW-ENT SW-ESC SW-L SW-PWR SW-R SW-TOP SW-U 8 SW-SPST-NO-B, SPST NO

Y2 1 XTAL-SMD, 17.63416Mhz

Schematics
(Revision C1: detailed 11"x 17" copy available here)

MTR Blocks

More detailed image. (PDF, 424kB)

More detailed image. (PDF, 403kB)

More detailed image. (PDF, 343kB)

More detailed image. (PDF, 242kB)

RDR Blocks

More detailed image. (PDF, 432kB)

Page 14 of 28

http://www.maximintegrated.com/images/appnotes/5391/5391Fig05.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBlock1.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBlock1.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc2.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc2.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc3.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc3.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc4.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391MeterBloc4.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc1.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc1.pdf

More detailed image. (PDF, 400kB)

More detailed image. (PDF, 436kB)

More detailed image. (PDF, 250kB)

Layout
(Revision C1: detailed scale plots available here.)

Page 15 of 28

http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc2.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc2.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc3.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc3.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc4.pdf
http://www.maximintegrated.com/images/appnotes/5391/5391ReaderBloc4.pdf
http://www.maximintegrated.com/images/appnotes/5391/ISM-RF-RD002-C1-L.pdf

References
1. MAXQ610 data sheet
2. MAXQ Family User's Guide
3. MAXQ610 User's Guide
4. MAXQ610 Revision A3 Errata
5. MAXQ610 evaluation kit
6. MAXQ USB-to-JTAG evaluation kit
7. Application note 4465, "Using the Serial Port on the MAXQ610 Microcontroller"
8. Application note 4314, "Getting Started with the MAXQ610 Evaluation Kit (EV Kit) and the IAR Embedded Workbench"
9. MAX ISM-RF Ref Des 002 Schematic

10. ISM-RF Reference Design 002 Layout
11. IAR Embedded Workbench IDE User Guide
12. EWMAXQ_AssemblerReference.pdf, MAXQ IAR Assembler Reference Guide
13. EWMAXQ_CompilerReference.pdf, MAXQ IAR C Compiler Reference Guide
14. Electronic Assembly, DOGS displays

Related Application Notes
Application note 2815, "Calculating the Sensitivity of an ASK Receiver"
Application note 3401 "Matching Maxim's 300MHz to 450MHz Transmitters to Small Loop Antennas"
Application note 3435 "Manchester Data Encoding for Radio Communications"
Application note 3671 "Data Slicing Techniques for UHF ASK Receivers"
Application note 4302 "Small Antennas for 300MHz to 450MHz Transmitters"

Page 16 of 28

http://www.maximintegrated.com/MAXQ610
http://www.maximintegrated.com/an4811
http://www.maximintegrated.com/an4812
http://datasheets.maximintegrated.com/en/errata/MAXQ610A3.pdf
http://www.maximintegrated.com/MAXQ610-KIT
http://www.maximintegrated.com/MAXQUSBJTAG-KIT
http://www.maximintegrated.com/an4465
http://www.maximintegrated.com/an4314
http://www.maximintegrated.com/images/appnotes/5391/ISM-RF-RD002-C2-S.pdf
http://www.maximintegrated.com/images/appnotes/5391/ISM-RF-RD002-C1-L.pdf
http://www.iar.com/en/Products/IAR-Embedded-Workbench/Maxim-MAXQ/
http://www.lcd-module.com/products/dog.html
http://www.maximintegrated.com/an2815
http://www.maximintegrated.com/an3401
http://www.maximintegrated.com/an3435
http://www.maximintegrated.com/an3671
http://www.maximintegrated.com/an4302

Application note 4314, "Getting Started with the MAXQ610 Evaluation Kit (EV Kit) and the IAR Embedded Workbench"
Application note 4465, "Using the Serial Port on the MAXQ610 Microcontroller"
Application note 4636 "Avoid PC-Layout "Gotchas" in ISM-RF Products"
Application note 5142, "Radio Link-Budget Calculations for ISM-RF Products"

Appendix I: RKE Frame Structure
The basic structure of the data frame is ASK modulated, Manchester encoded, 4.8kbps (0.2083ms/bit), has 144 bits per frame (18 bytes or 9, 2-
byte words), 30ms per frame, a pause of 70ms between frames, and 3 frame transmissions per burst. For information on Manchester encoding,
refer to application note 3435, "Manchester Data Encoding for Radio Communications."

Frame Structure

Preamble ID Function Data Sync Bat Sig Chk Sum

FF FF FF FD 02 00 00 01 00 01 00 00 43 21 11 22 01 68

The structure of this frame is arbitrary but has been established to provide an example of the information that can be contained in any frame
related to the many ISM-RF applications.

Preamble

Preamble

FF FF FF FD

The default preamble for this reference design is 4 bytes of high data with a pair of stop bits at the end. Since this is transmitted with Manchester
encoding, the waveform appears as a 4.8kHz square wave lasting for 6.67ms. Having a preamble longer than roughly 1ms should provide ample
time for the Rx system to wake up, given a strong received signal strength. The MAX1473 has a typical wake-up time of 250µs to start receiving
valid data. Extra time can be padded onto this initial wake-up time to allow the Rx system to properly settle the baseband slicing circuit, which in
turn provides optimum sensitivity. Providing a preamble of over 6ms gives ample opportunity for a relatively weak signal to wake up the receiver.

Assuming the MAXQ610 microcontroller used in the Rx is sitting in a stop mode, the system will consume a certain number of received bits to
start up the microcontroller before it can begin decoding the data stream. The nanopower ring oscillator in the MAXQ610 typically runs at 8kHz
(the wakeup timer interval can be 1/fNANO to 65535/fNANO). If the Rx system is configured to use the RXSIG or the RXDATA line as an interrupt
generator, the µC would have a warm-up time of 8192 × tHFXIN. With tHFXIN = 83.3ns (fXCLK = 12MHz clock), the warm-up time works out to
approximately 0.6827µs. This is well within the time available in one preamble transmission, and at a baud rate of 4.8kbps, the µC should be in a
warmed-up state within 3.28 bits. The FD pattern at the end of the preamble is used to indicate the following start of the data frame and is the
key to synchronizing the received bit stream.

ID Structure

ID

01 23 45 67

The ID section is configured with 4 bytes of identification. This permits 232 unique identifiers or over 4.29 billion codes. If one byte is used for
class identification (256 different car models for example), 224 unique identifiers or over 16 million codes remain. The structure can be modified to
suit the purpose of the user. This RD has been preprogrammed to use an identification code as noted above, with the last byte being adjusted
between RD systems. This allows for simultaneous operation of multiple, independent RKE systems.

Function Structure

Function

00 01

This simple reference design has only four input switches on the transmitter, so 2 bytes of "functions" is overkill. Again, this structure can be
modified to suit the purposes of the user. In this application, when button A is pressed, the function value would be 00 01. When button B is
pressed, the function value would be 00 02, and so forth. The function value is used to convey information (with individual buttons having their
own bit), so it is possible to press multiple buttons simultaneously. In that instance, if buttons B and D were pressed together, the function value
would be represented as 00 0A (this multibutton operation has not been implemented in the design). This is an arbitrary definition for the structure
of the function value, and it can always be modified by the user.

Data Structure

Data

00 00

Page 17 of 28

http://www.maximintegrated.com/an4314
http://www.maximintegrated.com/an4465
http://www.maximintegrated.com/an4636
http://www.maximintegrated.com/an5142
http://www.maximintegrated.com/an3435
http://www.maximintegrated.com/MAX1473

The data section of this frame is provided for transmitting information, such as a temperature or pressure measurement, a speed indicator, etc. In
this design, the data section could work in concert with the function section to convey information whenever a button on the transmitter has been
pressed. Again, the use of this data value is arbitrary and can be modified by the user. This operation is not currently implemented in the design.

Sync Structure

Sync

43 21

The synchronization block is set up to enable encryption coding. Users can work with this section to provide rolling code sync, a public key, etc.
This operation is not currently implemented in the design.

Battery Gauge Indicator

Bat

11

This single byte allows the transmitter to send an indication of battery strength to the receiver. This section of the frame could have value when
indicating a need to change the Tx battery. This operation is not currently implemented in the design.

Signal Strength Indicator

Sig

22

A possible use for a transceiver configuration, the received signal strength of the return channel could be shared between the nodes. This
operation is not currently implemented in the design.

Checksum

Chk Sum

01 67

In this reference design, the checksum is used as a go/no-go gate for valid data. The frame values (except the preamble) are summed up during
transmission, one byte at a time, and the full sum is tacked on to the end of the frame as the checksum. This value is compared to a received
data stream, and a decision to use or discard the frame is made. The format of this checksum operation is arbitrary, but as long as the Tx/Rx and
the encode/decode methods are equivalent, the checksum process will operate as intended.

Appendix II: MTR Firmware
main.h (17 Sep 10, Rev 0.3):

/**
 * Copyright (C) 1999-2010 Maxim Integrated Products, All Rights Reserved.
 *
 * See main.c for additional information.
 *
 **/

/* Main Subroutines */
 void MasterInt();
 void AMRData(unsigned char MTRPort);

/* TX Subroutines */
 void SendBurst();
 void BuildPacket();

/* RX Subroutines */
 void DecodeRX();
 void OversampleRX();
 void PreambleSyncRX();
 void AlignRX();
 void PullDownSet();
 char PullDownPair(short int MPIndex);
 char Validate();
 char Paired();

Page 18 of 28

/* 7032 Subroutines */
 void Init7032();
 void Prep7032TX();
 void Prep7032RX();
 void Prep7032Sleep();

/* SPI Subroutines */
 unsigned int Write7032Reg(unsigned char Adr, unsigned char Data);
 unsigned int Read7032Reg(unsigned char Adr);
 void ClockOutSPI(unsigned char InBit, unsigned int Delay);
 unsigned char ClockInSPI(unsigned int Delay);

/* Common Subroutines */
 void Lights7();
 void Pause(long int Count);
 void WriteFlash(unsigned int Address, unsigned int Data);
 unsigned int ReadFlash(unsigned int Address);
 void EraseFlash(unsigned int Address);
 void GoToSleep();
 void ExtISR();
 void Sleep();
 void WakeUp();

/* --- */
/* Global Constants */
 static int IntFlag = 0;
// static int SleepTime = 0x0FA00; // ~ 5.3sec sleep time (almost max), ~2F2B per sec
 static int SleepTime = 0x08D81; // ~ 3sec sleep time
 static int SetHold = 29; // default SPI setup and hold time, ~0.05ms
 static char WakeForSession = 0; // Flag for RX
 static char FWRev = 0x04; // Firmware revision

/* --- */
/* AMR Constants/Variables */
 static char AMRSession = 0; // flag for active AMR session
 static char Meter[8][2] = {{0x00, 0x00}, // initial values for each meter
 {0x22, 0x22},
 {0x00, 0x00},
 {0x00, 0x00},
 {0x00, 0x00},
 {0x00, 0x00}};
/* --- */
/* TX Constants/Variables */
 static int PacketChars = 18;
 static char Preamble[4] = {0xFF, 0xFF, 0xFF, 0xFD},
 ID[4] = {0x02, 0x00, 0x02, 0x01},
 Func[2] = {0x00, 0x00},
 Data[2] = {0x00, 0x00},
 Sync[2]= {0x43, 0x21},
 Bat = 0x11,
 Sig = 0x22,
 CheckSum[2] = {0x00, 0x00};
 static char Packet[19]; // store the packet data as a string: 18 char + null
 static int BitMask[8] = {128, 64, 32, 16, 8, 4, 2, 1}; // store a bit mask
 static int TXWUCnt = 273; // TX Warm-Up Count (~500us)
 static int ManCnt = 61; // pause time for 1/2 Manchester bit
 static long int TXOffCnt = 40000; // TX Off time Count

/* --- */
/* RX Constants/Variables */

 static char UnitID[4] = {0x02, 0x00, 0x02, 0x01}; // ID of the MTR unit
 static char ManPacket[39]; // store the Manchester data of with 2x18+1 char
 // packet (including full preamble) + 2 'noise' characters
 static int ByteShift = 0;
 static int BitShift = 0;

Page 19 of 28

/* --- */

See the latest RD002-MTR*.zip file for all the firmware code.
main.c (17 Sep 10, Rev 0.3)
isr.c (17 Sep 10)

Appendix III: RDR Firmware
main.h (21 Sep 10, Rev 0.3):

/**
 * Copyright (C) 1999-2010 Maxim Integrated Products, All Rights Reserved.
 *
 * See main.c for additional information
 *
 **/

/* Main Subroutines */
 void MasterInt();

/* AMR Subroutines */
 void AMRStart();
 void AMRRX();
 void AMRAttn();
 void AMRReq();
 void AMRAck(unsigned char Reset);
 void AMRClose();

/* RKE Subroutines */
 void RKERX();

/* MAXBee Subroutines */
 void Echo();
 char EchoCheck();

/* RX Subroutines */
 void DecodeRX();
 void OversampleRX();
 void PreambleSyncRX();
 void AlignRX();
 void PullDownSet();
 char PullDownPair(short int MPIndex);
 char Validate();
 char Paired();

/* TX Subroutines */
 void SendBurst();
 void BuildPacket();

/* 7032 Subroutines */
 void Init7032();
 void Prep7032TX();
 void Prep7032RX();
 void Prep7032Sleep();

/* Menu Subroutines */
 void MainMenu(); // Header
 void TopMenu(); // Page 0
 void AMRMenu(); // Page 1
 void MTRMenu(); // Page 2
 void RKEMenu(); // Page 3
 void UtilMenu(); // Page 4
 void CommMenu(); // Page 5
 void DataMenu(); // Page 6
 void MenuNav(unsigned char Key, unsigned char TopSub);
 void ListNav(unsigned char Key);
 void ColNav(unsigned char Key);
 void PrintEditMTR();

Page 20 of 28

http://www.maximintegrated.com/design/tools/appnotes/5391/AN5391-RD002-MTR.zip

 void MenuEnt();
 void MenuEsc();
 void EditNav(unsigned char Key);

/* Display Subroutines */
 void InitDisp();
 void ClrDisp();
 void PrintDisp(unsigned char AlphaNum, unsigned char x, unsigned char y);
 void PrintByteDisp(unsigned char Byte, unsigned char x, unsigned char y) ;
 void PrintByteBDisp(unsigned char Byte, unsigned char x, unsigned char y) ;
 void PrintLineDisp(unsigned char AlphaNum[17], unsigned char y);
 void WriteEADogs(unsigned char ComDat, unsigned char Data);
 void DispSPI(unsigned char InBit);

/* 7359 and I2C Subroutines */
 void InitKeys();
 void WriteKeys(unsigned char Cmd, unsigned char Data);
 unsigned char ReadKeys(unsigned char Cmd);
 unsigned char MOSII2C(unsigned char SendByte);
 unsigned char MISOI2C();
 void StartI2C();
 void StopI2C();

/* SPI Subroutines */
 unsigned int Write7032Reg(unsigned char Adr, unsigned char Data);
 unsigned int Read7032Reg(unsigned char Adr);
 void ClockOutSPI(unsigned char InBit, unsigned int Delay);
 unsigned char ClockInSPI(unsigned int Delay);

/* Common Subroutines */
 void Lights7();
 void BackLight(unsigned char Mode);
 void Pause(long int Count);
 void WriteFlash(unsigned int Address, unsigned int Data);
 unsigned int ReadFlash(unsigned int Address);
 void EraseFlash(unsigned int Address);
 void GoToSleep();
 void WakeUp();
 void ExtISR();
 void Sleep();
 void WURX();

/* --- */
/* Global Constants/Variables */
 static char IntFlag = 0; // Interrupt flag
 static char SetHold = 29; // default SPI setup and hold time, ~0.05ms
 static char TRXMode = 0; // RX = 0, TX = 1
 static char BGColor = 2; // Default background color
 static char SleepFlag = 0; // Auto power down flag
 static char SleepTick = 0; // count for seconds until sleep
 static int SleepTime = 120; // adjustable auto power-down time (seconds)
 static char FWRev = 0x05; // Firmware revision

/* --- */
/* MAXBee Constants/Variables */
 static char TargetID[4] = {0x02, 0x00, 0x01, 0x04}; // ID of the "other" radio

/* --- */
/* AMR Constants/Variables */
 static char AMRSession = 0; // flag for active AMR session
 // Initial MTR IDs
 static char MTRID[16][5] = {{0x02, 0x00, 0x02, 0x00, 0x00}, // This Unit
 {0x02, 0x00, 0x02, 0x01, 0x10}, // first MTR Unit ID
 {0x02, 0x00, 0x02, 0x02, 0x10},
 {0x02, 0x00, 0x02, 0x02, 0x11},
 {0x02, 0x00, 0x00, 0x03, 0x00},
 {0x02, 0x00, 0x00, 0x03, 0x00},
 {0x02, 0x00, 0x00, 0x04, 0x00},

Page 21 of 28

 {0x02, 0x00, 0x00, 0x04, 0x00},
 {0x00, 0x00, 0x00, 0x08, 0x00},
 {0x00, 0x00, 0x00, 0x09, 0x00},
 {0x00, 0x00, 0x00, 0x0A, 0x00},
 {0x00, 0x00, 0x00, 0x0B, 0x00},
 {0x00, 0x00, 0x00, 0x0C, 0x00},
 {0x00, 0x00, 0x00, 0x0D, 0x00},
 {0x00, 0x00, 0x00, 0x0E, 0x00},
 {0x00, 0x00, 0x00, 0x0F, 0x00}};
 static char AMRMode = 1; // flag for batch processing of AMR sessions
 static char MTRData[16][2] = {{0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00},
 {0x00, 0x00}, {0x00, 0x00}};

/* --- */
/* RX Constants/Variables */

 static char UnitID[4] = {0x02, 0x00, 0x00, 0x00}; // ID of the RDR unit
 static char ManPacket[39]; // store the Manchester data of with 2x18+1 char
 // packet (including full preamble) + 2 'noise' characters
 static int ByteShift = 0;
 static int BitShift = 0;

 static char ID[4] = {0x02, 0x00, 0x00, 0x01}, // storage of the RX data
 Func[2] = {0x00, 0x00},
 Data[2] = {0x00, 0x00},
 Sync[2]= {0x00, 0x00},
 Bat = 0x00,
 Sig = 0x00,
 CheckSum[2] = {0x00, 0x00};

 static char PairID[4] = {0x02, 0x00, 0x00, 0x01}; // initial paired ID
 static char PairON = 0; // flag to indicate the pairing function

/* --- */
/* TX Constants/Variables */
 static int PacketChars = 18;
 static char Preamble[4] = {0xFF, 0xFF, 0xFF, 0xFD};
 static char Packet[19]; // store the packet data as a string: 18 char + null
 static int BitMask[8] = {128, 64, 32, 16, 8, 4, 2, 1}; // store a bit mask
 static int TXWUCnt = 273; // TX Warm-Up Count (~500us)
 static int ManCnt = 61; // pause time for 1/2 Manchester bit
 static long int TXOffCnt = 40000; // TX Off time Count

/* --- */
/* Display Constants/Variables */
 static int DispSetHold = 2; // SPI setup and hold time for Display

 static char MenuPage = 0; // Page selection
 static char MenuRMin = 2; // Minimum Row selection
 static char MenuRow = 2; // Row selection
 static char MenuRMax = 3; // Maximum Row selection
 static char MenuCol = 0; // Column selection
 static char MenuSel = 0; // Selection flag
 static char Inverse = 0; // 0 = B on W, 1 = W on B
 static char ListBox = 0; // List box flag
 static char ListIndex = 0; // List box index
 static char Edit = 0; // Edit flag
 static char IDEdit = 0; // Edit flag for the MTR ID field (reflects ID bit)
 static char DataBox = 0; // Data box flag

/* --- */
/* Font/Print Lines */

Page 22 of 28

__data16 static unsigned char font6x8[0x50][6] = { // initiate the 6x8 font
 {0x3E, 0x51, 0x49, 0x45, 0x3E, 0x00}, // 0 [0x00]
 {0x00, 0x42, 0x7F, 0x40, 0x00, 0x00}, // 1 [0x01]
 {0x42, 0x61, 0x51, 0x49, 0x46, 0x00}, // 2 [0x02]
 {0x21, 0x41, 0x49, 0x4D, 0x33, 0x00}, // 3 [0x03]
 {0x18, 0x14, 0x12, 0x7F, 0x10, 0x00}, // 4 [0x04]
 {0x27, 0x45, 0x45, 0x45, 0x39, 0x00}, // 5 [0x05]
 {0x3C, 0x4A, 0x49, 0x49, 0x30, 0x00}, // 6 [0x06]
 {0x41, 0x21, 0x11, 0x09, 0x07, 0x00}, // 7 [0x07]
 {0x36, 0x49, 0x49, 0x49, 0x36, 0x00}, // 8 [0x08]
 {0x06, 0x49, 0x49, 0x29, 0x1E, 0x00}, // 9 [0x09]
 {0x7C, 0x12, 0x11, 0x12, 0x7C, 0x00}, // A [0x0A]
 {0x7F, 0x49, 0x49, 0x49, 0x36, 0x00}, // B [0x0B]
 {0x3E, 0x41, 0x41, 0x41, 0x22, 0x00}, // C [0x0C]
 {0x7F, 0x41, 0x41, 0x41, 0x3E, 0x00}, // D [0x0D]
 {0x7F, 0x49, 0x49, 0x49, 0x41, 0x00}, // E [0x0E]
 {0x7F, 0x09, 0x09, 0x09, 0x01, 0x00}, // F [0x0F]

 {0x3E, 0x41, 0x49, 0x49, 0x7A, 0x00}, // G [0x10]
 {0x7F, 0x08, 0x08, 0x08, 0x7F, 0x00}, // H [0x11]
 {0x00, 0x41, 0x7F, 0x41, 0x00, 0x00}, // I [0x12]
 {0x20, 0x40, 0x41, 0x3F, 0x01, 0x00}, // J [0x13]
 {0x7F, 0x08, 0x14, 0x22, 0x41, 0x00}, // K [0x14]
 {0x7F, 0x40, 0x40, 0x40, 0x40, 0x00}, // L [0x15]
 {0x7F, 0x02, 0x1C, 0x02, 0x7F, 0x00}, // M [0x16]
 {0x7F, 0x04, 0x08, 0x10, 0x7F, 0x00}, // N [0x17]
 {0x3E, 0x41, 0x41, 0x41, 0x3E, 0x00}, // O [0x18]
 {0x7F, 0x09, 0x09, 0x09, 0x06, 0x00}, // P [0x19]
 {0x3E, 0x41, 0x51, 0x21, 0x5F, 0x00}, // Q [0x1A]
 {0x7F, 0x09, 0x19, 0x29, 0x46, 0x00}, // R [0x1B]
 {0x26, 0x49, 0x49, 0x49, 0x32, 0x00}, // S [0x1C]
 {0x01, 0x01, 0x7F, 0x01, 0x01, 0x00}, // T [0x1D]
 {0x3F, 0x40, 0x40, 0x40, 0x3F, 0x00}, // U [0x1E]
 {0x1F, 0x20, 0x40, 0x20, 0x1F, 0x00}, // V [0x1F]

 {0x3F, 0x40, 0x38, 0x40, 0x3F, 0x00}, // W [0x20]
 {0x63, 0x14, 0x08, 0x14, 0x63, 0x00}, // X [0x21]
 {0x03, 0x04, 0x78, 0x04, 0x03, 0x00}, // Y [0x22]
 {0x61, 0x51, 0x49, 0x45, 0x43, 0x00}, // Z [0x23]
 {0x00, 0x40, 0x38, 0x18, 0x00, 0x00}, // , [0x24]
 {0x00, 0x60, 0x60, 0x00, 0x00, 0x00}, // . [0x25]
 {0x08, 0x08, 0x08, 0x08, 0x08, 0x00}, // - [0x26]
 {0x08, 0x08, 0x3E, 0x08, 0x08, 0x00}, // + [0x27]
 {0x16, 0x16, 0x16, 0x16, 0x16, 0x00}, // = [0x28]
 {0x2A, 0x1C, 0x7F, 0x1C, 0x2A, 0x00}, // * [0x29]
 {0x20, 0x10, 0x08, 0x04, 0x02, 0x00}, ///[0x2A]
 {0x02, 0x01, 0x51, 0x09, 0x06, 0x00}, // ? [0x2B]
 {0x04, 0x02, 0x01, 0x02, 0x04, 0x00}, // ^ [0x2C]
 {0x00, 0x08, 0x14, 0x22, 0x41, 0x00}, // < [0x2D]
 {0x00, 0x41, 0x22, 0x14, 0x08, 0x00}, // > [0x2E]
 {0x00, 0x10, 0x20, 0x40, 0x20, 0x10}, // v [0x2F]

 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // space [0x30]
 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, // full block [0x31]
 {0x00, 0x00, 0x14, 0x00, 0x00, 0x00}, // : [0x32]
 {0x00, 0x40, 0x34, 0x00, 0x00, 0x00}, // ; [0x33]
 {0x00, 0x00, 0xFF, 0x00, 0x00, 0x00}, // | [0x34]
 {0x00, 0x00, 0xF8, 0x08, 0x08, 0x08}, // , - [0x35]
 {0x08, 0x08, 0xF8, 0x00, 0x00, 0x00}, // -, [0x36]
 {0x00, 0x00, 0x0F, 0x08, 0x08, 0x08}, // '- [0x37]
 {0x08, 0x08, 0x0F, 0x00, 0x00, 0x00}, // -' [0x38]
 {0x40, 0x60, 0x30, 0x18, 0x0C, 0x00}, // *M [0x39]
 {0x7F, 0x7F, 0x30, 0x18, 0x0C, 0x00}, // *M [0x3A]
 {0x7F, 0x7F, 0x00, 0x40, 0x60, 0x30}, // *M *A [0x3B]
 {0x18, 0x0C, 0x40, 0x7F, 0x7F, 0x00}, // *A [0x3C]
 {0x41, 0x63, 0x36, 0x18, 0x1C, 0x36}, // *X [0x3D]
 {0x63, 0x41, 0x00, 0x7F, 0x7F, 0x00}, // *X *I [0x3E]

Page 23 of 28

 {0x7F, 0x7F, 0x00, 0x00, 0x00, 0x00}, // *M [0x3F]

 {0xFF, 0xFF, 0xC3, 0xC3, 0xC3, 0xC3}, // 'B [0x40]
 {0xE3, 0xF7, 0xBE, 0x1C, 0x00, 0x00}, // B' [0x41]
 {0x03, 0x03, 0x03, 0x03, 0x00, 0x00}, // E' [0x42]
 {0xF8, 0xFE, 0x0F, 0x03, 0x03, 0x03}, // 'O [0x43]
 {0x03, 0x0F, 0xFE, 0xF8, 0x00, 0x00}, // O' [0x44]
 {0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, // 'L [0x45]
 {0xFF, 0xFF, 0x03, 0x03, 0x03, 0x03}, // 'D [0x46]
 {0x3F, 0x3F, 0x30, 0x30, 0x30, 0x30}, // , B [0x47]
 {0x30, 0x39, 0x1F, 0x0E, 0x00, 0x00}, // B. [0x48]
 {0x30, 0x30, 0x30, 0x30, 0x00, 0x00}, // E. [0x49]
 {0x07, 0x1F, 0x3C, 0x30, 0x30, 0x30}, // , O [0x4A]
 {0x30, 0x3C, 0x1F, 0x07, 0x00, 0x00}, // O. [0x4B]
 {0x08, 0x08, 0x08, 0x08, 0x08, 0x08}, // - [0x4C]
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // space [0x0D]
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // space [0x0E]
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // space [0x0F]
 };

/* - */
// Top Menu items
 static unsigned char MainMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x16, 0x0A, 0x12, 0x17,
 0x30, 0x16, 0x0E, 0x17, 0x1E};

 static unsigned char AMRLn[17] = {0x30, 0x30, 0x0A, 0x16, 0x1B, 0x30,
 0x16, 0x0E, 0x17, 0x1E, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char RKELn[17] = {0x30, 0x30, 0x1B, 0x14, 0x0E, 0x30,
 0x16, 0x0E, 0x17, 0x1E, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char UtilLn[17] = {0x30, 0x30, 0x1E, 0x1D, 0x12, 0x15,
 0x12, 0x1D, 0x22, 0x30, 0x16, 0x0E,
 0x17, 0x1E, 0x30, 0x30, 0x30};
/* - */
// AMR Menu items
 static unsigned char AMRMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x0A, 0x16, 0x1B, 0x30,
 0x16, 0x0E, 0x17, 0x1E, 0x30};

 static unsigned char MTRListLn[17] = {0x30, 0x30, 0x16, 0x1D, 0x1B, 0x30,
 0x15, 0x12, 0x1C, 0x1D, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char AMRModeLn[17] = {0x30, 0x30, 0x0A, 0x16, 0x1B, 0x30,
 0x16, 0x18, 0x0D, 0x0E, 0x32, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char StartCommLn[17] = {0x30, 0x30, 0x1C, 0x1D, 0x0A, 0x1B,
 0x1D, 0x30, 0x0C, 0x18, 0x16, 0x16,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char DataListLn[17] = {0x30, 0x30, 0x0D, 0x0A, 0x1D, 0x0A,
 0x30, 0x15, 0x12, 0x1C, 0x1D, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

/* - */
// MTR Menu items
 static unsigned char MTRMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x16, 0x1D, 0x1B, 0x30,
 0x16, 0x0E, 0x17, 0x1E, 0x30};

 static unsigned char MTREditLn[17] = {0x30, 0x30, 0x0E, 0x0D, 0x12, 0x1D,
 0x30, 0x16, 0x1D, 0x1B, 0x32, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

Page 24 of 28

/* - */
// RKE Menu items
 static unsigned char RKEMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x1B, 0x14, 0x0E, 0x30,
 0x16, 0x0E, 0x17, 0x1E, 0x30};

 static unsigned char ModeLn[17] = {0x30, 0x30, 0x16, 0x18, 0x0D, 0x0E,
 0x32, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char TXIDLn[17] = {0x34, 0x1D, 0x21, 0x30, 0x12, 0x0D,
 0x32, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

 static unsigned char FuncLn[17] = {0x34, 0x0F, 0x1E, 0x17, 0x0C, 0x1D,
 0x12, 0x18, 0x17, 0x32, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

 static unsigned char PairLn[17] = {0x30, 0x30, 0x19, 0x0A, 0x12, 0x1B,
 0x30, 0x1D, 0x21, 0x2A, 0x1B, 0x21,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char WaitLn[17] = {0x30, 0x30, 0x20, 0x0A, 0x12, 0x1D,
 0x12, 0x17, 0x10, 0x30, 0x0F, 0x18,
 0x1B, 0x30, 0x1D, 0x21, 0x30};

/* - */
// Util Menu items

 static unsigned char UtilMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x1E, 0x1D, 0x12, 0x15,
 0x30, 0x16, 0x0E, 0x17, 0x1E};

 static unsigned char BGColorLn[17] = {0x30, 0x30, 0x0B, 0x0A, 0x0C, 0x14,
 0x15, 0x1D, 0x32, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char AMRSesLn[17] = {0x30, 0x30, 0x0A, 0x16, 0x1B, 0x30,
 0x1C, 0x0E, 0x1C, 0x1C, 0x12, 0x18,
 0x17, 0x32, 0x30, 0x30, 0x30};

 static unsigned char SleepLn[17] = {0x30, 0x30, 0x1C, 0x15, 0x0E, 0x0E,
 0x19, 0x30, 0x1D, 0x12, 0x16, 0x0E,
 0x32, 0x30, 0x30, 0x30, 0x30};

 static unsigned char UnitIDLn[17] = {0x34, 0x1E, 0x17, 0x12, 0x1D, 0x32,
 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

/* - */
// Comm Menu items
 static unsigned char CommMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x16, 0x1D, 0x1B, 0x30,
 0x0C, 0x18, 0x16, 0x16, 0x30};

 static unsigned char CommMTRLn[17] = {0x30, 0x30, 0x0C, 0x18, 0x16, 0x16,
 0x30, 0x16, 0x1D, 0x1B, 0x32, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char DataLn[17] = {0x34, 0x0D, 0x0A, 0x1D, 0x0A, 0x32,
 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

 static unsigned char MTRIDLn[17] = {0x34, 0x16, 0x1D, 0x1B, 0x32, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

Page 25 of 28

/* - */
// Data Menu items
 static unsigned char DataMenuLn[17] = {0x1B, 0x0D, 0x00, 0x00, 0x02, 0x30,
 0x26, 0x30, 0x0D, 0x0A, 0x1D, 0x0A,
 0x30, 0x16, 0x0E, 0x17, 0x1E};

 static unsigned char DataDispLn[17] = {0x30, 0x30, 0x0D, 0x0A, 0x1D, 0x0A,
 0x30, 0x16, 0x1D, 0x1B, 0x32, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

/* - */
// Misc
 static unsigned char BlankLn[17] = {0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char MaximLn[17] = {0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E,
 0x39, 0x3A, 0x3F, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30};

 static unsigned char Bold1Ln[17] = {0x34, 0x30, 0x40, 0x41, 0x40, 0x42,
 0x30, 0x40, 0x41, 0x43, 0x44, 0x45,
 0x30, 0x46, 0x44, 0x30, 0x34};

 static unsigned char Bold2Ln[17] = {0x34, 0x30, 0x47, 0x48, 0x47, 0x49,
 0x30, 0x47, 0x48, 0x4A, 0x4B, 0x47,
 0x49, 0x47, 0x4B, 0x30, 0x34};

 static unsigned char Box1Ln[17] = {0x35, 0x4C, 0x4C, 0x4C, 0x4C, 0x4C,
 0x4C, 0x4C, 0x4C, 0x4C, 0x4C, 0x4C,
 0x4C, 0x4C, 0x4C, 0x4C, 0x36};

 static unsigned char Box2Ln[17] = {0x37, 0x4C, 0x4C, 0x4C, 0x4C, 0x4C,
 0x4C, 0x4C, 0x4C, 0x4C, 0x4C, 0x4C,
 0x4C, 0x4C, 0x4C, 0x4C, 0x38};

 static unsigned char Box3Ln[17] = {0x34, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
 0x30, 0x30, 0x30, 0x30, 0x34};

See the latest RD002-RDR*.zip file for all firmware code.
main.c (21 Sep 10, Rev 0.3):
isr.c (21 Sep 10):

Appendix IV: RX Timing

Page 26 of 28

http://www.maximintegrated.com/design/tools/appnotes/5391/AN5391-RD002-RDR.zip

Appendix V: Preliminary MAXBee Protocol Definition
1. Radio Nomenclature

All radios are transceivers.
The meter consists of a water flow meter, a microcontroller that counts switch contacts (indicating a unit of water volume), and a
transceiver that sends the flow information to a remote reader. The receiver part of the radio listens for commands from the reader.
The reader consists of a handheld display, a key (as in keypad) decoder for pushbutton commands, a microcontroller that processes
the flow rate information sent by the meter and interfaces with the display, and a transceiver that sends commands to multiple meters
and receives flow rate information from these meters.
Both the meter and reader are battery-powered, so they cannot be on all the time. The meter radio is smaller than the reader and has a
smaller, lower-life battery, so its on-off duty cycle should be lower than the reader.

2. Communication Protocol Overview
A single reader will communicate with multiple meters. The meters are connected to water pipes and are therefore stationary. The
reader can be fixed or mobile.
The purpose of the reader's communication link is to receive water usage information remotely from the meters via the radio link. The
simplest way to do this is "on demand, " which means that the reader initiates the information-gathering process. A repetitive or
scheduled reading, is more reliable and predictable, but would require time synchronization of all the meters and the reader.
All information between the reader and the meters is contained in a predefined frame, specifically chosen for the reader-meter
demonstration system. This frame contains ID information, data, functions, plus preamble, synch, and basic error detection (checksum).
All information transfer takes place through these frames.

Page 27 of 28

3. Communication Protocol Procedure
All radio transmissions are done at a single frequency. There are no channels or frequency hopping.
Each meter periodically turns on its receiver to listen for a command from the reader. The period and duty cycle are the same for each
meter, but because their clocks are not synchronized, there will be no structured on and off timing for the meters. It is possible to set
each meter's duty cycle differently to achieve a condition that is closer to random listening periods. If the meter does not recognize a
command from the reader during its "on" time, it turns off until its next "on" cycle.
The reader issues a Broadcast command when it wants to receive readings from the meters. The format of this command is such that it
is recognized by every meter within range. When a meter receives this command, it goes into another mode, in which it keeps its
receiver on continuously. Once all the meters have been set to a steady listening mode, the reader is ready to poll each meter. The
steady listening mode is most likely determined by a time-interval setup on the reader that accounts for the time it takes for every meter
to wake up in its low duty-cycle listening mode.
The reader issues sequential bursts of frames, each burst containing the ID code of the particular meter that is to report its water volume
or flow data to the reader. Upon reception of its unique code, the meter transmits its data to the reader. All other meters will receive this
transmission, but the frame will not contain their codes, so they will continue to keep their receivers on until they recognize their ID.
After the reader confirms reception from a meter and displays or stores the information, it changes the ID number in its transmitted
frame and starts the reading process from another meter.
Each meter keeps its receiver on after it has transmitted information. It reverts to its periodic low duty-cycle listening mode either after it
has gone for a predetermined interval without receiving another frame with its ID, or upon receiving another Broadcast command from
the reader telling it to revert to its low duty-cycle mode.

Enercell is a registered trademark of TRS Quality, Inc.
IAR Embedded Workbench is a registered trademark of IAR Systems AB.
MAXQ is a registered trademark of Maxim Integrated Products, Inc.
Panasonic is a registered trademark and registered service mark of Panasonic Corporation.
Radio Shack is a registered trademark of Technology Properties, Inc.
Windows is a registered trademark and registered service mark of Microsoft Corporation.
Windows XP is a registered trademark and registered service mark of Microsoft Corporation.

Related Parts

MAX7032 Low-Cost, Crystal-Based, Programmable, ASK/FSK Transceiver with Fractional-N
PLL

Free Samples

MAX7359 2-Wire Interfaced Low-EMI Key Switch Controller/GPO Free Samples

MAXQ610 16-Bit Microcontroller with Infrared Module Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5391: http://www.maximintegrated.com/an5391
REFERENCE DESIGN 5391, AN5391, AN 5391, APP5391, Appnote5391, Appnote 5391
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 28 of 28

http://www.maximintegrated.com/datasheet/index.mvp/id/4755
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX7032
http://www.maximintegrated.com/datasheet/index.mvp/id/5456
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX7359
http://www.maximintegrated.com/datasheet/index.mvp/id/5939
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ610
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an5391
http://www.maximintegrated.com/legal

	maxim-ic.com
	LFRD002: Wireless Automatic Meter Reading Reference Design - Reference Design - Maxim

